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The fullerenes of the C60 series (C60, C240, C540, C960, C1500, C2160 etc.) form

onion-like shells with icosahedral Ih symmetry. Up to C2160, their geometry has

been optimized by Dunlap & Zope from computations according to the analytic

density-functional theory and shown by Wardman to obey structural constraints

derived from an affine-extended Ih group. In this paper, these approaches are

compared with models based on crystallographic scaling transformations. To

start with, it is shown that the 56 symmetry-inequivalent computed carbon

positions, approximated by the corresponding ones in the models, are mutually

related by crystallographic scalings. This result is consistent with Wardman’s

remark that the affine-extension approach simultaneously models different

shells of a carbon onion. From the regularities observed in the fullerene models

derived from scaling, an icosahedral infinite C60 onion molecule is defined, with

shells consisting of all successive fullerenes of the C60 series. The structural

relations between the C60 onion and graphite lead to a one-parameter model

with the same Euclidean symmetry P63mc as graphite and having a c/a = �2 ratio,

where � = 1.618 . . . is the golden number. This ratio approximates (up to a 4%

discrepancy) the value observed in graphite. A number of tables and figures

illustrate successive steps of the present investigation.

1. Introduction

The symmetry approach to virus architecture discussed by J. P.

Wardman in her PhD thesis (Wardman, 2012) is based on the

molecular crystallography of icosahedral viruses, taking into

account the structural constraints by the point arrays derived

from affine-extended symmetry groups (see, in particular,

Keef et al., 2013; Janner, 2013, and references therein). In this

PhD thesis Wardman also applies aspects of the theory to

fullerenes. The name ‘fullerenes’ designates hollow carbon

spheroids (Kroto et al., 1985). As pointed out by Wardman,

viruses are not the only multishell polyhedral structures with

icosahedral symmetry.

Typical in a molecular crystallographic approach are

indexed polygons and polyhedra, where the rational indices of

the vertices correspond to points of lattices (of a suitable

dimension) left invariant by the point group of the molecular

system. Such an approach has been applied to axial-symmetric

biomacromolecules, where the architectural elements are

indexed enclosing forms. The idea that an icosahedral virus

represents a special case of these molecules allowed the

identification of various types of indexed enclosing forms in

the multishells of the virus, which involves, in particular, an

external capsid and a genome, leading to a classification

alternative with respect to the seminal one of Caspar and

Klug (Caspar & Klug, 1962; Janner, 2006; Keef & Twarock,

2009).

The correlation between various indexed forms has been

expressed in terms of crystallographic scalings, where the

scaling transformation, represented by invertible matrices

with rational entries, allows one to relate vertices of the

indexed forms having different radial distances from the

molecular centre. These scalings play an analogous role as the

affine extensions introduced by the York group. The mutual

relations are not trivial and require further investigation.

The constraints imposed by indexed forms and by point

arrays, respectively, to viruses (and to axial-symmetric

proteins) are only loosely related to atomic positions because

of the typical chain structure involved (polypeptides and

RNA, in particular) and this fact is a handicap when one tries

to relate the geometric structure to physical, chemical and

biological properties.

In fullerenes the situation is more favourable because they

are pure carbon structures. It is, therefore, not surprising to

find an extended literature of articles devoted to this funda-

mental problem, whose interest is enhanced by possible

nanotechnological applications (see, for example, Fleming et

al., 1992; Bühl & Hirsch, 2001; Dunlap & Zope, 2006; Cala-

minici et al., 2012, and references therein).

The 1993 article of Chung and Sternberg is a classical

example of how to calculate properties of the C60 fullerene,

the so-called buckyball (Kroto et al., 1985), from various

points of view: topology, symmetry, group theory, spectro-

scopy, graph theory (Chung & Sternberg, 1993). In a similar
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spirit, the structure of the fullerenes considered in this paper is

presented according to alternative approaches: topological,

computational, affine-extended and scaling ones.

Denoting by (V E F) the number of vertices V, of edges E

and of faces F, the topology of a three-dimensional poly-

hedron implies the Euler formula

V � Eþ F ¼ 2: ð1Þ

In the icosahedral fullerene each carbon atom is bound to

three other C atoms, so that the polyhedron of the molecular

skeleton is denoted as trivalent.

For trivalent polyhedra Euler deduced the additional rela-

tion: P
n

ð6� nÞfn ¼ 12; ð2Þ

where fn is the number of polygons with n sides forming a face

of the polyhedron. As a fullerene polyhedron consists of

hexagons and pentagons, the above Euler relations imply

(Chung & Sternberg, 1993)

E ¼ 3V=2; F ¼ 2þ V=2; f5 ¼ 12: ð3Þ

In particular for C60 one has ðV E FÞ ¼ ð60 90 32Þ, with 20

hexagons and 12 pentagons.

A few general remarks and perspectives for future investi-

gations conclude this paper.

2. Alternative approaches

The various approaches considered are all based on the point-

group symmetry of the icosahedral fullerenes. The two groups

I ¼ 235 and Ih ¼ m35 of the icosahedral system (order 60 and

120) are the largest finite subgroups of the three-dimensional

orthogonal group SOð3Þ and Oð3Þ, respectively. While I is the

point group of the icosahedral viruses, that of the icosahedral

fullerenes is Ih.

The present analysis is based on the computational

approach of Dunlap & Zope (2006) of the most stable full-

erene onions C240, C540, C960, C1500 and C2160 (Kroto & McKay,

1988), taking into account the experimental geometry of C60

optimized by using analytic functional theory and orbital basis

sets of the multi-electrons involved. The ground-state energy

of various onions of this series has been calculated and

compared with that of single cages (Maiti et al., 1993).

The result is summarized in Table 1 of the Dunlap–Zope

paper in terms of the coordinates (in Å) of Ih-inequivalent

carbon atoms. These coordinates x; y; z are expressed with

respect to the orthonormal basis e ¼ fe1; e2; e3g oriented along

the icosahedral twofold axes. The orbits, generated by Ih from

the atomic positions indicated, are either of order 120 or of

order 60. The elements of the orbits define the vertices of

corresponding polyhedra with icosahedral symmetry. In the

60-order case, one of the coordinates is necessarily zero,

because mirror-equivalent points coincide.

The other two approaches, based on the ideas of molecular

crystallography, investigate the possibility of approximating

the experimental or the computed geometric fullerene struc-

ture by carbon positions having integral (or more generally

rational) indices, according to six-dimensional faithful integral

representations of the icosahedral groups. The one-to-one

correspondence between the three-dimensional coordinates

(x; y; z) and the set of rational indices [h1; h2; h3; h4; h5; h6]

follows from the relation between the orthonormal basis e and

the basis a ¼ fa1; a2; . . . ; a6g of a Z module �ico of dimension

3 and rank 6 given by

a1 ¼ a0ðe1 þ �e3Þ; a2 ¼ a0ð�e1 þ e2Þ; a3 ¼ a0ð�e2 þ e3Þ;
a4 ¼ a0ð�e1 þ �e3Þ; a5 ¼ a0ð��e2 þ e3Þ; a6 ¼ a0ð�e1 � e2Þ;

ð4Þ

where a0 is the icosahedral lattice parameter and � ¼
ð1þ 51=2Þ=2 the golden number. Both approaches make use of

results derived from a symmetry characterization of icosa-

hedral viruses (Janner, 2006, 2013; Keef & Twarock, 2009;

Keef et al., 2013).

In the first of these molecular crystallographic approaches,

the restrictions imposed by affine extensions of the icosa-

hedral group (in the present case Ih) are applied to fullerenes,

as discussed in Wardman’s PhD thesis (Wardman, 2012). The

second one, which is the object of the present paper, makes

use of crystallographic scaling transformations (Janner, 2006).

The scaling transformations considered are the product of

fractional scaling of the coordinates x; y; z along icosahedral

twofold axes:

Xkx ¼ kx; Yky ¼ ky; Zkz ¼ kz; ð5Þ

for a fraction k ¼ m=n. The corresponding six-dimensional

invertible matrices in the icosahedral basis a, reported in

Appendix A, are of the type already considered in equation

(13) of Janner (2006) and transform positions with rational

indices into ones also with rational indices.

The fullerenes mentioned above are here discussed, starting

from the C60 cluster.

3. The C60 fullerene

The topological relations of equation (3) imply for the

geometry of C60 a polyhedron (60 90 32) with 60 vertices, 90

edges, 32 faces: two types of faces (20 hexagons and 12

pentagons) and two types of edges, 60 pentagonal (denoted as

epent), given by the sides of the pentagons, and 30 hexagonal

(ehex), which are those of contiguous hexagons.

The carbon positions computed by Dunlap–Zope are

generated by Ih from

Q½0� ¼ ðx0; y0; 0Þ ¼ ð3:4785; 0:6991; 0:0000Þ; ð6Þ

where Q denotes the computed orbit (of order 60) with

elements Q½n�, n ¼ 0; 1; 2; . . . ; 59, numbered according to the

successive icosahedral transformations, which in the present

case are those of the point group I, because mirror-related

elements coincide. It is convenient to fix once and for all the

succession.1
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As the ratio x0=y0 ¼ 4:9757 of the two non-vanishing

coordinates indicated in their paper is different from

3� ¼ 4:8541, the hexagonal and the pentagonal edges have a

different length. In the conventional order mentioned above,

one finds that the two positions Q½17�, Q½2� delimit a penta-

gonal edge and Q½17�, Q½40� a hexagonal one:

epent ¼ dðQ½17�;Q½2�Þ ¼ 1:451;

ehex ¼ dðQ½17�;Q½40�Þ ¼ 1:398; ð7Þ

where d denotes distance and the values are in Å.

The geometrical form of C60 is a truncated icosahedron. In

the ideal case all edges have equal length. The truncation can

be obtained from an icosahedron by 1/3-scaling of one coor-

dinate of its vertices. So, for example, from the position at

3ð1; 0; �Þ ¼ 3½100000� [see equation (4) with icosahedral

lattice parameter a0 ¼ 1], one finds the position

X1=3ð3; 0; 3�Þ ¼ ð1; 0; 3�Þ ¼ ½200100� ð8Þ

and all other equivalent ones for the standard form of the C60

polyhedron with edge length 2 (for a0 ¼ 1), as listed in Tables

A.4 and A.5 of Wardman’s PhD thesis. The ideal C60 fullerene

has the same set of indexed positions but with a0 ¼ 0.7042 Å,

for coordinates in Å. In particular the orbit A generated from

the carbon position

A½0� ¼ 0:7042ð3�; 1; 0Þ ¼ ð3:4182; 0:7042; 0:0000Þ ¼ ½020001�

ð9Þ

approximates the computed one Q½0� indicated in equation

(6).

One sees that it is precisely in the molecular crystal-

lographic indexed approximation that one gets the ideal C60

structure considered in the literature, with equal nearest-

neighbour distance 2a0.

A view of C60, shown in Fig. 1 along the z axis (a twofold

icosahedral direction), allows one to verify that the basis a

defined in equation (4) and denoted in Janner (2013) as ‘ico1’

is a compatible basis for C60. (The concept of compatibility is

discussed in the same paper, where alternative icosahedral

bases are considered there in Table 6 and illustrated in Figs. 6

and 7.)

One distinguishes accordingly two indexed C60 polyhedra

generated from [210000] in the basis ico1: the standard C60 for

the icosahedral parameter a0 ¼ 1 and the ideal C60 for a0 =

0.7042 Å. The ideal one approximates the computed C60,

generated from Q½0�, which corresponds to the experimentally

observed C60 carbon fullerene.

4. The computed onion of the icosahedral fullerenes
C60, C240, C540, C960, C1500, C2160

The computed carbon positions (with coordinates in Å)

considered in this article are those listed in Table 1 of Dunlap

& Zope (2006). The point group Ih generates from these

positions the various orbits, whose elements define the poly-

hedral vertices of the fullerenes listed above.

To allow comparison between the alternative approaches

considered, it is convenient to label these positions (and the

corresponding orbits) in the same sequential order as the one

adopted in Table 1 of Dunlap and Zope.

In particular, the first orbit Q1, of order 60, generated

by Q1½0� ¼ ð3:4785; 0:6991; 0:0000Þ (denoted by Q in the

previous section) is the one of the computed C60. The orbits

Q2 (of order 120), Q3 and Q4 (of order 60) are those of the

fullerene C240 and the last orbit considered is Q56, generated

by Q56½0� ¼ ð11:3039; 0:0000; 20:5910Þ, of C2160.

Table 1 summarizes the labelling of the orbits according to

the list of positions given in Table 1 of Dunlap and Zope. All

fullerenes considered are truncated icosahedra with 12

pentagonal and 20 hexagonal faces.

5. The C60 series from Ih affine extensions

As already mentioned, in the PhD work of Wardman (2012)

the affine-extension method of the York group (see Keef et al.,

2013) is applied to fullerene models in a standard repre-
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Figure 1
The C60 fullerene (buckyball), oriented according to the icosahedral
twofold axes, is shown along the x axis (top view) and along the y axis
(bottom view). Compared are the indexed positions (black circles) with
the positions (in red) of the orbit generated by Ih from the coordinates
indicated in Table 1 of Dunlap & Zope (2006).

Table 1
Orbital labelling of the onion fullerenes.

Ih orbits

Fullerenes Order 120 Order 60

C60 Q1

C240 Q2 Q3;Q4

C540 Q8;Q9;Q10 Q5;Q6;Q7

C960 Q11–Q16 Q17–Q20

C1500 Q21–Q30 Q31–Q35

C2160 Q36–Q50 Q51–Q56



sentation, in particular to elements of the C60 series with shells

of onion-like molecular structures composed of the fullerenes

C60, C240, C540, C1500, C2160, C2940 (Kroto & McKay, 1988;

Terrones et al., 2002).

The aim of the present paper is not to give a full derivation

of the results mentioned in Wardman (2012), but only to

characterize her approach in comparison with alternative

ones. Therefore the method is illustrated by the C240 and C540

shells only.

The start configuration is the standard C60 polyhedron,

whose 60 vertices are listed in Tables A.4 and A.5 of Ward-

man’s thesis. Then, among the admissible translations given in

Tables A.9 and A.10, Wardman found that the only relevant

one for the C60 series is along a fivefold axis with multiplier 3,

indicated as 45 in the list of the point arrays of Table A.10. In

the standard representation this translation, denoted 3T5, can

be chosen pointing from the origin to the indexed position

[300000].

To begin with, the point group Ih is applied to the start

configuration translated by 3T5. This gives rise to the nine

orbits listed in Table 2. Among these orbits, three are the ones

defining the standard C240 polyhedron: one of order 120 and

two of order 60. The identification indicated in Table 2 has

here been obtained by comparison with the orbits Q2;Q3;Q4

computed by Dunlap and Zope, as illustrated in Fig. 2.

Repeating the procedure a second time by applying the same

translation again, one then gets 46 inequivalent orbits and the

six ones of the standard C540 configuration, as indicated in

Table 3. This concludes the present illustration of the affine-

extended approach. As mentioned in Wardman’s thesis on

page 144, the subsequent shells can be derived in a similar way.

Relevant is her remark that the procedure simultaneously

models different shells of a carbon onion.

6. Crystallographic scalings applied to icosahedral
fullerenes

The goal of the following alternative approach, the same as

that of the previous one based on affine-extended point arrays,

is to find the integral indexed positions which define the

generators of fullerenes belonging to the C60 series.

The general philosophy, however, is quite different, not only

because it is based on crystallographic scalings instead of

affine extensions, but also because it starts from given

experimental data or, as in the present case, from the

computed ones by Dunlap and Zope, in order to determine

the integral indices of the positions which approximate the

given structure. One then extracts generic laws from the

solutions found for the various shells. Typical in this process of

approximating a three-dimensional position by a set of six

integral indices is that one normally finds many nearly good

solutions. ‘Nearly good’ is a solution which is quite acceptable
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Table 2
Model of C240 onion fullerene according to the affine-extended point
arrays approach (Wardman, 2012).

No.
Radius
(a0 ¼ 1)

Orbit
order

Affine-extended
generator
(first-order
translation 3T5)

Dunlap
& Zope
(2006)
generator

3 2.0000 30 [1,�11,0,0,0,0]
7 4.0000 30 [2,0,�22,0,0,0]
1 4.9559 60 [0,�22,0,0,0,�11]
5 5.2915 120 [3,0,0,�22,�11,0]
9 6.8861 120 [3,0,0,�22,0,1]
4 8.1749 120 [3,0,2,0,0,�11]
2 9.2867 120 [3,0,1,2,0,0] Q2

6 9.9119 60 [4,0,0,0,0,2] Q3

8 10.4997 60 [5,0,1,0,0,0] Q4

Figure 2
Model of the C240 fullerene with positions (black circles) indexed
according to the affine-extended point arrays identified by Wardman
(2012) compared with the fitted orbits Q2 (cyan), Q3 (red) and Q4 (blue)
computed by Dunlap & Zope (2006) (see Table 2).

Table 3
Model of the fullerene C540 according to the affine-extended point arrays
approach (Wardman, 2012), leading to 46 Ih-inequivalent orbits.

No.
Radius
(a0 ¼ 1)

Orbit
order

Affine-extended
generator
(first-order
translation 3T5)

Dunlap
& Zope
(2006)
generator

19 1.5209 60 [3,�33,0,�22,�11,0]
31 2.0000 30 [�11,0,0,0,1,0]
. . . . . . . . . . . . . . .
17 8.9431 120 [3,0,3,�22,�11,0]

5 8.9431 120 [3,1,0,�33,�22,0]
23 9.1955 120 [3,0,�55,�11,0,0] Q9

4 9.2868 120 [0,0,1,3,0,�22]
42 9.3482 60 [2,�22,0,3,0,0]
. . . . . . . . . . . . . . .
37 13.1996 120 [6,0,�11,0,0,2]
14 13.4773 120 [5,1,0,0,3,0]
24 13.7497 120 [4,2,0,0,0,3] Q10

1 14.1797 120 [3,0,0,5,1,0]
34 14.5963 60 [4,0,0,0,0,5] Q6

44 14.5964 120 [6,0,0,0,2,1] Q8

46 15.3969 60 [7,2,0,0,0,0] Q5

45 16.1575 60 [8,1,0,0,0,0] Q7



from the numerical point of view, but misses essential global

properties needed for the characterization of the expected

relevant architectural elements, as is indeed the case for the

ideal C60 structure discussed in x3.

From the practical point of view, it is convenient to restrict,

at first, the considerations to the orbits of order 60 (because

this involves positions with two non-vanishing coordinates

only). The determination of the remaining orbits of order 120

is then based on the results obtained so far.

Before proceeding, we recall that the Qi (i ¼ 1 . . . 56) label

the Ih-inequivalent orbits of Dunlap and Zope and that the Ai

denote the corresponding indexed ones, both for the ideal case

(a0 ¼ 0:7042) and for the standard one (a0 ¼ 1), as discussed

in x3.

6.1. Indexing the orbits of order 60

A vanishing coordinate is left invariant by any scaling along

the corresponding axis. Therefore only scalings along the two

other orthogonal axes possibly occur for the positions

belonging to orbits of order 60. According to Table 1 of

Dunlop and Zope, 0 is the z coordinate of Q1 (for C60), Q3, Q4

(for C240), and Q5;Q6;Q7 (for C540). In all the other cases:

Q17; . . . ;Q20 (for C960), Q31; . . . ;Q35 (for C1500) and

Q51; . . . ;Q56 for C2160 one has y ¼ 0.

Therefore one tries to find scaling factors which relate the

positions Q3 to Q7 to A1½9� ¼ 0:7042ð3�; 1; 0Þ and all the other

ones to A1½1� ¼ 0:7042ð1; 0; 3�Þ, where [1] and [9] refer to the

successive order in which the vertices of C60 are listed in

Tables A.4 and A.5 of Wardman’s PhD thesis. The result for

the shells involved is listed in Table 4.

As A1½1� and A1½9� are related by cyclic permutation of their

coordinates according to an icosahedral group element of

order 3, it is very simple to express the orbits A3; . . . ;A7 in

terms of crystallographic scalings from A1½1� instead of from

A1½9� as in Table 4. For example the orbits A3;A4 are related

to A1½1� by

X2Z2A1½1� ¼ ½4; 0; 0; 2; 0; 0�; X4Z2A1½1� ¼ ½5; 0; 0; 1; 0; 0�:

ð10Þ

Accordingly all orbits of order 60 are related to one single

position of C60. As shown further on, this is true for all the

icosahedral orbits of the whole series.

One verifies the validity of the ideal positions indexed as

indicated in Table 4 by comparison with the computed ones,

where in some cases a rescaling of a few per cent was applied

to individual computed orbits for getting a better global fitting

between the computed positions and the indexed (ideal) ones.

Examples are shown in Figs. 2 to Fig. 6. Moreover, these

positions allow the definition of standard polyhedra having

regularity properties summarized in Table 5. The general

situation is illustrated in Fig. 3 for the C960 fullerene.

In all fullerene shells the positions generating by Ih the

orbits of order 60 define polyhedra with the same number of

vertices, edges and faces (V E F) = (60 90 32) and equal

pentagonal edges (ep ¼ 2a0). They differ in the length of the

hexagonal edges which are decorated by positions at alter-

nating distances 2a0 and 4a0. In the order-60 case, the number

of inequivalent positions is n, thus equal to the successive

numbering of the shells (see Table 5).

From the positions along the x axis of these decorated

polyhedra, oriented according to the icosahedral twofold axes,

one can deduce corresponding Xk scaling relations. So, for

example, in the C960 case, for the positions at distances 10, 8, 4

and 2 from the y axis one finds scalings X10;X8;X4;X2 relating

the common position Z4A1½1� ¼
1
2 ½13; 0; 0; 11; 0; 0� to the

corresponding orbits A19;A20;A18;A17:

A17 ¼ X2Z4A1½1� ¼ ½7; 0; 0; 5; 0; 0�;

A18 ¼ X4Z4A1½1� ¼ ½8; 0; 0; 4; 0; 0�;

A19 ¼ X10Z4A1½1� ¼ ½11; 0; 0; 1; 0; 0�;

A20 ¼ X8Z4A1½1� ¼ ½10; 0; 0; 2; 0; 0�; ð11Þ

implying the additional scaling relations (see Fig. 3)

A19 ¼ X5A17; A20 ¼ X4A17; A18 ¼ X2A17: ð12Þ
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Table 4
Crystallographic scalings along the x; y; z axes relating the C60 positions
A1½1� = ½2; 0; 0; 1; 0; 0� = ð1; 0; 3�Þ and A1½9� ¼ ½0; 2; 0; 0; 0; 1� ¼ ð3�; 1; 0Þ
to order-60 positions of the shells C240, C540, C960, C1500, C2160 (for a0 ¼ 1).

Shell Orbit Scaling relation Indexed position

C240 A3 X2Y2A1½9� [0,4,0,0,0,2]
A4 X2Y4A1½9� [0,5,0,0,0,1]

C540 A5 X3Y5A1½9� [0,7,0,0,0,2]
A6 X3A1½9� [0,5,0,0,0,4]
A7 X3Y7A1½9� [0,8,0,0,0,1]

C960 A17 X2Z4A1½1� [7,0,0,5,0,0]
A18 X4Z4A1½1� [8,0,0,4,0,0]
A19 X10Z4A1½1� [11,0,0,1,0,0]
A20 X8Z4A1½1� [10,0,0,2,0,0]

C1500 A31 X7Z5A1½1� [11,0,0,4,0,0]
A32 X5Z5A1½1� [10,0,0,5,0,0]
A33 X11Z5A1½1� [13,0,0,2,0,0]
A34 X13Z5A1½1� [14,0,0,1,0,0]
A35 Z5A1½1� [8,0,0,7,0,0]

C2160 A51 X2Z6A1½1� [10,0,0,8,0,0]
A52 X4Z6A1½1� [11,0,0,7,0,0]
A53 X10Z6A1½1� [14,0,0,4,0,0]
A54 X8Z6A1½1� [13,0,0,5,0,0]
A55 X14Z6A1½1� [16,0,0,2,0,0]
A56 X16Z6A1½1� [17,0,0,1,0,0]

Table 5
C60 polyhedra with hexagonal edges decorated by positions of generators
of order 60 (standard case a0 ¼ 1).

Shell
polyhedron

Number of positions
(orbits of order 60)

Pentagonal
edges ep

Hexagonal
edges eh

C60 1 2 2
C240 2 2 8
C540 3 2 14
C960 4 2 20
C1500 5 2 26
C2160 6 2 32



6.2. Indexing the orbits of order 120

Before proceeding with the indexing of the elements

belonging to the orbits of order 120, it is convenient to get a

general view of the computed positions with respect to the

ideal structure of the elements of order 60, derived in the

preceding subsection. In all fullerene shells one finds a similar

situation, illustrated here in Fig. 3 for C960, where the

computed nearest neighbours inside the hexagonal face of

C960 have been drawn connected. In a view along the twofold

axis one sees that these positions form (approximately) a

honeycomb net and are arranged along lines parallel to the x

axis. This allows one to deduce, as in the case discussed in the

previous subsection, the expected Xk scalings between aligned

positions, starting from 60-order positions, turned by 2�/5�

from the previous determined ones along the x axis.

For example, the positions belonging to the orbits

A11;A12;A14 are at aligned distances from the y axis which

are 1/11, 5/11 and 7/11, respectively, of the y coordinate of

A19½59� ¼ ½11; 0; 1; 0; 0; 0� (of order 60). Applying to this

position corresponding scaling transformations one computes

the indices of these positions:

A11½61� ¼ X1=11½11; 0; 1; 0; 0; 0�

¼ ½6; 0; 1; 5; 0; 0�

A12½79� ¼ X5=11½11; 0; 1; 0; 0; 0�

¼ ½8; 0; 1; 3; 0; 0�

A14½53� ¼ X7=11½11; 0; 1; 0; 0; 0�

¼ ½9; 0; 1; 2; 0; 0�: ð13Þ

In a similar way from A20½55� ¼ ½10; 0; 2; 0; 0; 0� and

A17½59� ¼ ½7; 0; 5; 0; 0; 0� one finds the generators of the

remaining orbits:

A13½35� ¼ X1=5½10; 0; 2; 0; 0; 0�

¼ ½6; 0; 2; 4; 0; 0�

A16½118� ¼ X2=5½10; 0; 2; 0; 0; 0�

¼ ½7; 0; 2; 3; 0; 0�

A15½18� ¼ X1=7½7; 0; 5; 0; 0; 0�

¼ ½4; 0; 5; 3; 0; 0�: ð14Þ

Finally, all the Ih orbits of the fullerenes C60, C240, C540, C960,

C1500, C2160 have been determined. The procedure is illu-

strated in Fig. 4 for the C1500 fullerene, where the related

order-120 positions are shown along the same blue line. As

already mentioned, all are connected by crystallographic

scalings to one single position, say A1½1� ¼ ½2; 0; 0; 1; 0; 0�, and

eventually also to the generator [1,0,0,0,0,0] of the icosa-

hedron. In each shell, as already mentioned, all nearest

neighbours are at the same distance 2a0. An overview of the 56

inequivalent indexed positions is reported in Table 6, to be

compared with Table 1 of Dunlap and Zope for the computed

carbon positions.
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Figure 3
C960 fullerene in a view along the icosahedral twofold axis. The indices of
inequivalent positions of order 60 (large circles), occurring along the x
axis, are obtained by crystallographic scalings from the icosahedral vertex
at [120000] and are compared with positions computed by Dunlap and
Zope (filled circles of correspondingly same colour). The additional
computed positions of orbits of order 120 form a honeycomb net inside
the hexagonal faces (delimited by red lines).

Figure 4
C1500 fullerene. The positions of the orbits of order 60 are along the sides
of the hexagonal faces (one face is delimited by a red line). The five
inequivalent positions of order-60 orbits along the right-hand side of this
face are marked by large circles and so also the additional 15 inequivalent
positions which allow one to generate the orbits of order 120, obtained by
crystallographic scaling from the order-60 positions aligned parallel to the
x axis and connected by a blue line.



7. The icosahedral C60 onion

The 56 inequivalent indexed positions listed in Table 6, which

generate the multishells formed by the six first icosahedral

fullerenes C60, C240, C540, C960, C1500 and C2160 of the C60 series,

permit an algorithmic characterization whose validity can be

extended to any integral value n ¼ 1; 2; . . . ;1. In this way

one can consider the whole C60 series as a single molecular

onion: the C60 onion.

The C60 onion is, accordingly, a space-filling one-parameter

(a0) discrete multishell structure with icosahedral symmetry,

where, starting from C60 (as a first shell), each successive other

shell is an indexed fullerene (with the shape of a truncated

icosahedron) obeying the given algorithm.

The aim of this section is to elucidate structural properties

of the newly defined C60 onion and to formulate the algorithm

for the derivation of the Ih-inequivalent positions.

The properties depend, in general, on the parity of the shell

number n. The odd and even cases are parametrized according

to

n ¼ nodd ¼ 2j� 1 and n ¼ neven ¼ 2j; j ¼ 1; 2; . . . ;1:

ð15Þ

7.1. Topological properties

For a given shell, the number of inequivalent positions

belonging to the orbit of order 60 is equal to the shell number

n. For the orbits of order 120 the number of required positions

depends on the parity of n:

N60 ¼ n; Nodd
120 ¼ ðj� 1Þð2j� 1Þ;

Neven
120 ¼ jð2j� 1Þ; j ¼ 1; 2; . . . ;1: ð16Þ

As already mentioned, the number of pentagonal faces is

always fp ¼ 12, that of hexagonal faces in the truncated

icosahedra is f6 ¼ 20 (which is not the number of hexagonal

faces in each of the nth-shell fullerene, for n> 1).

One verifies the validity of these relations for the fullerenes

considered by Dunlap and Zope (from C60 to C2160) and for

the additional one C2940 mentioned by Wardman, which occurs

as the seventh shell (n ¼ 7).

7.2. Geometrical characterization

The shells are truncated icosahedra in the same orientation,

with equal pentagonal faces and honeycomb hexagons with

the same edge length: ep ¼ eh. The triangular face of the

icosahedron of the shell n has an edge of length eI . The

parallel set of these faces cuts the corresponding threefold axis

at hI ¼ nh0:

ep ¼ eh ¼ 2a0; eI ¼ 6na0; hI ¼ nh0; h0 ¼ 31=2�2; ð17Þ

with � the golden number. On each icosahedral edge eI there

are 2n positions of order 60, in total therefore 60n.

The positions of order 120 are inside the triangular icosa-

hedral face and form a honeycomb net having hexagonal

edges eh ¼ 2a0, equal to the pentagonal ones, and therefore

there are 3nðn� 1Þ on a given face and 60nðn� 1Þ in total.

Accordingly, the total number of occupied positions is given

by 60nþ 60nðn� 1Þ ¼ 60n2. This geometrical characteriza-

tion is summarized in Tables 7 and 8.

7.3. Caspar–Klug construction

The honeycomb net one finds in a planar face of the nth

fullerene shell has as inside points the positions of order 120

and a boundary delimited by those of order 60. This suggests

research papers

174 A. Janner � Alternative approaches to onion-like icosahedral fullerenes Acta Cryst. (2014). A70, 168–180

Table 6
Inequivalent indexed positions in standard icosahedral fullerenes of the
C60 series.

Fullerene Orbit Order
Indexed
position

C60 A1 60 [0,0,0,0,2,1]
C240 A2 120 [1,3,0,0,0,2]

A3 60 [0,4,0,0,0,2]
A4 60 [0,5,0,0,0,1]

C540 A5 60 [7,0,0,2,0,0]
A6 60 [5,4,0,0,0,0]
A7 60 [0,8,0,0,0,1]
A8 120 [6,0,2,1,0,0]
A9 120 [1,0,3,5,0,0]
A10 120 [3,2,0,0,0,4]

C960 A11 120 [6,0,1,5,0,0]
A12 120 [8,0,1,3,0,0]
A13 120 [6,0,2,4,0,0]
A14 120 [9,0,1,2,0,0]
A15 120 [5,0,3,4,0,0]
A16 120 [7,0,2,3,0,0]
A17 60 [7,0,0,5,0,0]
A18 60 [8,0,0,4,0,0]
A19 60 [11,0,0,1,0,0]
A20 60 [10,0,0,2,0,0]

C1500 A21 120 [7,0,2,6,0,0]
A22 120 [12,0,1,2,0,0]
A23 120 [8,0,1,6,0,0]
A24 120 [9,0,1,5,0,0]
A25 120 [9,0,2,4,0,0]
A26 120 [10,0,2,3,0,0]
A27 120 [11,0,1,3,0,0]
A28 120 [6,0,5,4,0,0]
A29 120 [7,0,5,3,0,0]
A30 120 [8,0,3,4,0,0]
A31 60 [11,0,0,4,0,0]
A32 60 [10,0,0,5,0,0]
A33 60 [13,0,0,2,0,0]
A34 60 [14,0,0,1,0,0]
A35 60 [8,0,0,7,0,0]

C2160 A36 120 [9,0,2,7,0,0]
A37 120 [10,0,2,6,0,0]
A38 120 [12,0,2,4,0,0]
A39 120 [13,0,2,3,0,0]
A40 120 [14,0,1,3,0,0]
A41 120 [15,0,1,2,0,0]
A42 120 [11,0,1,6,0,0]
A43 120 [12,0,1,5,0,0]
A44 120 [9,0,1,8,0,0]
A45 120 [8,0,4,6,0,0]
A46 120 [9,0,4,5,0,0]
A47 120 [10,0,3,5,0,0]
A48 120 [11,0,3,4,0,0]
A49 120 [8,0,3,7,0,0]
A50 120 [7,0,5,6,0,0]
A51 60 [10,0,0,8,0,0]
A52 60 [11,0,0,7,0,0]
A53 60 [14,0,0,4,0,0]
A54 60 [13,0,0,5,0,0]
A55 60 [16,0,0,2,0,0]
A56 60 [17,0,0,1,0,0]



that we should apply to the C60 onion the

construction devised by Caspar and Klug for the

surface classification of icosahedral viruses

(Caspar & Klug, 1962). A similar procedure to

generate icosahedral fullerenes has been

followed by Terrones et al. (2002).

As presented in Janner (2006), Caspar and

Klug start from a planar honeycomb net and

consider a planar hexagonal lattice with basis

vectors b1, b2:

jb1j ¼ jb2j ¼ b0; b1b2 ¼
1
2 b2

0; ð18Þ

such that the honeycomb positions are lattice points with

integral coordinates z1 and z2. The vertices of a triangular

icosahedral face are put in coincidence with the lattice points

½0; 0�; ½h; k�; ½�k; hþ k�, respectively. The hexagonal basis

vectors are along two sides of one face, which in the present

case has a triangular edge eI ¼ 6na0. The hexagonal edge of

the honeycomb is eh ¼ 2a0 ¼ b0. This implies for the shell n

the Caspar–Klug parameters h ¼ 3n, k ¼ 0 and the triangu-

lation number T ¼ h2 þ hkþ k2 ¼ Pf 2 ¼ 9n2, thus P ¼ 1 and

co-factor f ¼ 3n.

In order to fit these conventional parameters with the ones

adopted so far, one first transforms the orthonormal basis

e ¼ fe1; e2; e3g, oriented along the twofold axes, into one

having an axis along a threefold direction. This can be

achieved by a rotation Rð�Þ around the original y direction,

with tan � ¼ �2:

Rð�Þ ¼

cosð�Þ 0 sinð�Þ

0 1 0

� sinð�Þ 0 cosð�Þ

0
B@

1
CA

¼
1

31=2

� � 1 0 �

0 31=2 0

�� 0 � � 1

0
B@

1
CA: ð19Þ

The coordinates x; y; z of the twofold-symmetric system

e ¼ fe1; e2; e3g are then transformed by Rð��Þ into the x0; y0; z0

ones of the rotated system e0 ¼ fe01; e02; e03g. In particular for the

Z module �ico of equation (4) one has

a1 ¼ a0ð1; 0; �Þe ¼ a0ð�2=31=2; 0; �2=31=2Þe0 ;

a2 ¼ a0ð�; 1; 0Þe ¼ a0ð1=31=2; 1; �2=31=2
Þe0 ;

a3 ¼ a0ð0; �; 1Þe ¼ a0ð��=31=2; �; ð� � 1Þ=31=2
Þe0 ;

a4 ¼ a0ð�1; 0; �Þe ¼ a0ð�2�=31=2; 0; ð�� þ 1Þ=31=2Þe0 ;

a5 ¼ a0ð0;��; 1Þe ¼ a0ð��=31=2;��; ð� � 1Þ=31=2
Þe0 ;

a6 ¼ a0ð�;�1; 0Þe ¼ a0ð1=31=2;�1; �2=31=2
Þe0 : ð20Þ

It is, therefore, natural to choose as reference the face with

icosahedral vertices along a1; a2; a6 perpendicular to [110001],

instead of that perpendicular to [111000] considered in Janner

(2006). The result of this reorientation is shown in Fig. 5 for

the fullerene C960. An enlarged view of the reference face of

the C2160 fullerene can be seen in Fig. 6, where one has now the

choice

b1 ¼ ða2 � a1Þ and b2 ¼ ða6 � a1Þ: ð21Þ

One then indicates the occupied fullerene positions of this

face in terms of z1 and z2 coordinates.

7.4. The algorithm

Considered is the icosahedral triangular face perpendicular

to the direction a1 þ a2 þ a6 ¼ ½110001� of the fullerene C60n2

forming the shell n of the C60 onion.

The Caspar–Klug hexagonal planar lattice �CK has basis

vectors b1 ¼ a0½110000�, b2 ¼ a0½100001�, as indicated in
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Table 7
Geometry of the nth shell of the C60 onion (for a0 ¼ 1).

Icosahedron Truncated icosahedron

Radius rI ¼ 3nð2þ �Þ1=2 rmax ¼ ½ð3n� 2Þ2 þ ð3n�Þ2�1=2 rmin ¼ ð4þ 3n2�4Þ
1=2

Edge eI ¼ 6n eh ¼ 6n� 4, ep ¼ 2 Decorated, at alternative
2, 4 distances

Face Triangular Truncated triangle Honeycomb with eh ¼ 2
Axial face cut hI ¼ 31=2n�2 hI ¼ 31=2n�2

Figure 5
Shown is the fullerene C960 in a view along an icosahedral threefold axis.
Enhanced are the positions belonging to the orbits of order 60, occurring
along the sides of the hexagonal faces (marked in red) delimiting the
honeycomb net formed by the positions of the orbits of order 120.

Table 8
Occupied positions in the truncated icosahedra of the C60 onion (for
a0 ¼ 1).

Shell n nodd ¼ 2j� 1 neven ¼ 2j

Positions Order 60 Order 120 Order 60 Order 120
Total number 2n 3nðn� 1Þ 2n 3nðn� 1Þ
Inequivalent n ðj� 1Þn n jðn� 1Þ



equation (21), and origin at the icosahedral vertex V1ðnÞ =

a0½3n; 0; 0; 0; 0; 0�.

The orbits of order 60 are generated from positions situated

on icosahedral edges. The n inequivalent ones can be chosen

at positions defined as

nPz;0 ¼ V1ðnÞ þ zb1 ¼ ½3n� z; z; 0; 0; 0; 0�;

z ¼ 1; 2; . . . ; zmax; z 6¼ 0 mod 3;

ð22Þ

where

zmax ¼

(
3j� 2 if nodd ¼ 2j� 1;
3j� 1 if neven ¼ 2j:

ð23Þ

The orbits of order 120 are generated from positions at the

honeycomb points inside the triangular face and can be

parametrized as

nPz1;z2
¼ V1ðnÞ þ z1b1 þ z2b2

¼ ½3n� z1 � z2; z1; 0; 0; 0; z2�;

z1 6¼ 0; z2 6¼ 0; z1 6¼ z2; ð24Þ

forming a zigzag pattern starting from order-60 positions nPz;0.

Both obey the relations valid for nPz1; z2:

z2 þ 1 � z1 � zmax z2 ¼ 1; . . . ; ðn� 1Þ;

z1 � z2 6¼ 0 mod 3 ð25Þ

where zmax is as above in equation (23) (see Fig. 6 for n ¼ 6).

Note that these positions generate the orbits, but are not all Ih-

inequivalent.

The 56 inequivalent positions obtained by applying the

algorithm to the first six shells of the C60 onion are reported in

Table 9. These positions correspond to those of Table 6. For a

given orbit, the indices of the positions listed in the two tables

are, in general, not the same.

8. Strong correlation

Each individual shell and the whole infinitely large C60 onion

molecule are generated by the icosahedral group Ih from

positions mutually related by crystallographic transforma-

tions. These are either scalings (as in x6) or lattice translations

(as in x7). Note that, in the last case, the planar hexagonal

lattice translations are combined with the translations (along

a threefold axis) connecting the various shells. Remarkably

enough, these translations are similar to lattice translations as

they are all multiples of a fundamental one, which in the

present case is the distance from the centre of a hexagonal

face of C60. These positions, even if inequivalent, are not

independent but all correlated.

Furthermore, as all positions together depend on a single

parameter only (a0), the structure is said to be strongly

correlated. This concept has been introduced in a series

of previous articles on axial-symmetric proteins. [See, in

particular, Janner (2005) which deals with protein–DNA

(or RNA) complexes.] Usually, when speaking of strong

correlation, electrons are intended and not, as here, atomic

positions.

In x6 the correlating transformations are crystallographic

scalings, whereas in x7 they are lattice translations. In fact, the

scalings considered in x6 can be transformed into the trans-

lations in x7 and both types can be transformed into one

another. This underlines their common crystallographic

nature.

To give an example: starting from the C60 position

A1½1� ¼ ½2; 0; 0; 1; 0; 0� ¼ ð1; 0; 3�Þe, the lattice translation

tk ¼ k½1; 0; 0; 1; 0; 0� ¼ ð2k; 0; 0Þe is equivalent with the crys-

tallographic scaling X1þ2k:
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Figure 6
Enlarged view of the hexagonal face of the fullerene C2160 belonging to
the icosahedral triangular one with vertices at V1 ¼ ½100000�,
V2 ¼ ½010000� and V6 ¼ ½000001�. The indexed positions of this fullerene
have been derived on the basis of the algorithm indicated in the text and
based on the Caspar–Klug construction. Along the side V1–V2 the six
inequivalent positions of the order-60 orbits are marked by large circles
and labelled as 6Pz;0 according to their coordinate with respect to the
hexagonal planar Caspar–Klug lattice, with the origin at V1 and basis
vectors b1, b2 shown as thick black segments. From these marked
positions, along a zigzag line delimiting hexagons of the honeycomb net,
one finds the 15 inequivalent order-120 positions, also encircled and
labelled as 6Pz1;z2

, with z1; z2 their planar lattice coordinates.



A1½1� þ tk ¼ ð1; 0; 3�Þ þ ð2k; 0; 0Þ

¼ ½2; 0; 0; 1; 0; 0� þ k½1; 0; 0; 1; 0; 0�

¼ X1þ2kA1½1� ¼ X1þ2kð1; 0; 3�Þ ¼ ð1þ 2k; 0; 3�Þ

¼ ½2þ k; 0; 0; 1� k; 0; 0�: ð26Þ

It is also possible to formulate the algorithm (based above on

lattice translations) in terms of crystallographic scalings. In

this case, however, one has to select the positions in the

hexagonal face of fullerenes in the twofold orientation, as in

x6, instead of in a threefold orientation as in x7.

The strong correlation of the inequivalent positions

suggests for the C60 onion a larger point-group symmetry than

the icosahedral group. The verification of this expectation is a

goal beyond the aim of the present article. It is already now

clear that this group cannot be orthogonal, because the posi-

tions involved have different radial distances from the centre

of the molecule. Furthermore, neither the correlating trans-

lations are admitted, nor do the crystallographic scalings have

a discrete structure.

9. Graphene sheets in C60 onion and in graphite

Let us recall that graphene is a two-dimensional crystal

formed by one sheet of graphite (Katsnelson, 2012) and has a

honeycomb net structure.

The successive shells in the C60 onion share the same

icosahedral orientation, and so also that of their pentagonal

and hexagonal faces. All the edges of the pentagons and of the

hexagons of the honeycomb nets inside the hexagonal faces

have equal length 2a0. The distance between successive

hexagonal faces is h0, as already derived in equation (17).

Moreover, the stacked honeycomb hexagons are in a

centre-to-centre and vertex-to-vertex relation, as shown in Fig.

7 for the successive indexed fullerenes C60, C240, C540, C960,

C1500, C2160, in a view along the z axis (in the [110001] direc-

tion) and along the y axis (perpendicular to it), respectively.

In this figure, red lines indicate the sides of the triangular

icosahedral faces involved and black circles mark the positions

belonging to the orbits of order 60 and 120.

For a0 ¼ 0:71 Å one gets the indexed model of the carbon

C60 onion, with 1.42 Å for the C—C distance dg, as in graphite

and in graphene. It is then natural to compare the distances

between graphene sheets in the C60 onion (h0) and in graphite

(hg) with respect to the common planar C—C distance dg ¼ eh.

One finds

h0=eh ¼ 31=2�2=2 ¼ 2:267; hg=dg ¼
3:35

1:42
¼ 2:359; ð27Þ

with a 4% difference between the ratios for the indexed model

C60 onion and for the experimental graphite. Note that the

equal spacing between nested fullerenes was noticed by Kroto

& McKay (1988). They also pointed out that this spacing

(1.42h0=eh = 3.22 Å) is circa the same as between sheets of

graphite (3.35 Å) (Kroto & McKay, 1988).

As such, a difference between the two values is quite

acceptable, because of the three different types of structures

involved: experimental, computational and indexed model,

which are intrinsically mutual approximations. A typical

example is the different C—C distance computed by Dunlap

and Zope for pentagonal and for hexagonal faces of C60

indicated in equation (7).

If one takes the relation of equation (27) as significant for

an indexed model of graphite, it would imply a strong corre-

lation expressed by a relation between the a and c parameters

of the hexagonal lattice of graphite:
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Table 9
Inequivalent indexed positions in the first six shells of the C60 onion
derived according to the given algorithm (icosahedral parameter a0 ¼ 1).

Shell n Position Orbit

1 (C60) 1P1;0 ¼ ½2; 1; 0; 0; 0; 0� A1

2 (C240) 2P1;0 ¼ ½5; 1; 0; 0; 0; 0� A4

2P2;0 ¼ ½4; 2; 0; 0; 0; 0� A3

2P2;1 ¼ ½3; 2; 0; 0; 0; 1� A2

3 (C540) 3P1;0 ¼ ½8; 1; 0; 0; 0; 0� A7

3P2;0 ¼ ½7; 2; 0; 0; 0; 0� A5

3P4;0 ¼ ½5; 4; 0; 0; 0; 0� A6

3P2;1 ¼ ½6; 2; 0; 0; 0; 1� A8

3P3;1 ¼ ½5; 3; 0; 0; 0; 1� A9

3P3;2 ¼ ½4; 3; 0; 0; 0; 2� A10

4 (C960) 4P1;0 ¼ ½11; 1; 0; 0; 0; 0� A19

4P2;0 ¼ ½10; 2; 0; 0; 0; 0� A20

4P4;0 ¼ ½8; 4; 0; 0; 0; 0� A18

4P5;0 ¼ ½7; 5; 0; 0; 0; 0� A17

4P2;1 ¼ ½9; 2; 0; 0; 0; 1� A14

4P3;1 ¼ ½8; 3; 0; 0; 0; 1� A12

4P3;2 ¼ ½7; 3; 0; 0; 0; 2� A16

4P4;2 ¼ ½6; 4; 0; 0; 0; 2� A13

4P4;3 ¼ ½5; 4; 0; 0; 0; 3� A15

4P5;1 ¼ ½6; 5; 0; 0; 0; 1� A11

5 (C1500) 5P1;0 ¼ ½14; 1; 0; 0; 0; 0� A34

5P2;0 ¼ ½13; 2; 0; 0; 0; 0� A33

5P4;0 ¼ ½11; 4; 0; 0; 0; 0� A31

5P5;0 ¼ ½10; 5; 0; 0; 0; 0� A32

5P7;0 ¼ ½8; 7; 0; 0; 0; 0� A35

5P2;1 ¼ ½12; 2; 0; 0; 0; 1� A22

5P3;1 ¼ ½11; 3; 0; 0; 0; 1� A27

5P3;2 ¼ ½10; 3; 0; 0; 0; 2� A26

5P4;2 ¼ ½9; 4; 0; 0; 0; 2� A25

5P4;3 ¼ ½8; 4; 0; 0; 0; 3� A30

5P5;3 ¼ ½7; 5; 0; 0; 0; 3� A29

5P5;4 ¼ ½6; 5; 0; 0; 0; 4� A28

5P5;1 ¼ ½9; 5; 0; 0; 0; 1� A24

5P6;1 ¼ ½8; 6; 0; 0; 0; 1� A23

5P6;2 ¼ ½7; 6; 0; 0; 0; 2� A21

6 (C2160) 6P1;0 ¼ ½17; 1; 0; 0; 0; 0� A56

6P2;0 ¼ ½16; 2; 0; 0; 0; 0� A55

6P4;0 ¼ ½14; 4; 0; 0; 0; 0� A53

6P5;0 ¼ ½13; 5; 0; 0; 0; 0� A54

6P7;0 ¼ ½11; 7; 0; 0; 0; 0� A52

6P8;0 ¼ ½10; 8; 0; 0; 0; 0� A51

6P2;1 ¼ ½15; 2; 0; 0; 0; 1� A41

6P3;1 ¼ ½14; 3; 0; 0; 0; 1� A40

6P3;2 ¼ ½13; 3; 0; 0; 0; 2� A39

6P4;2 ¼ ½12; 4; 0; 0; 0; 2� A38

6P4;3 ¼ ½11; 4; 0; 0; 0; 3� A48

6P5;3 ¼ ½10; 5; 0; 0; 0; 3� A47

6P5;4 ¼ ½9; 5; 0; 0; 0; 4� A46

6P6;4 ¼ ½8; 6; 0; 0; 0; 4� A45

6P6;5 ¼ ½7; 6; 0; 0; 0; 5� A50

6P5;1 ¼ ½12; 5; 0; 0; 0; 1� A43

6P6;1 ¼ ½11; 6; 0; 0; 0; 1� A42

6P6;2 ¼ ½10; 6; 0; 0; 0; 2� A37

6P7;2 ¼ ½9; 7; 0; 0; 0; 2� A36

6P7;3 ¼ ½8; 7; 0; 0; 0; 3� A49

6P8;1 ¼ ½9; 8; 0; 0; 0; 1� A44



c ¼ �2a ¼ 6:43 Å; ð28Þ

to be compared with the experimental values of a = 2.456 Å

and c ¼ 6:708 Å. Again a 4% discrepancy is found.

Note that in graphite the hexagons of the graphene sheets

are stacked in a centre-to-vertex relation and not centre-to-

centre as in the C60 onion (see Fig. 7).

Whether the relation between the model onion and

graphite presented is accidental or relevant depends on the

existence or not of a general meaningful context. The matter

presented in the next section possibly represents the desired

theoretical basis for such a context and for further future

investigations. In any case, it is a fact that with increasing shell

number the importance of the pentagonal faces with respect

to the graphite-like hexagonal honeycomb ones strongly

decreases.

10. A one-parameter model of graphite

It is possible to define a structural model which has the same

Euclidean symmetry as graphite and the same occupied

Wyckoff positions 2a and 2b of the space group P63mc and, at

the same time, integral indices when expressed in the icosa-

hedral Z module of equations (4) and (20).

In Table 10, the hexagonal lattice and the occupied Wyckoff

positions of the space group P63mc are expressed in integral

indices of the Z module �ico and in components of the

orthonormal basis e0 ¼ fe01; e02; e03g with e03 along the hexagonal

axis (parallel to an icosahedral threefold direction). This leads

to a one-parameter ideal model of graphite, with c ¼ �2a

instead of the two parameters of the experimental graphite

(a and c).

One can now look at the relation between carbon positions

in the fullerenes of the C60 onion and of the graphite model.

Both ideal structures approximate the corresponding experi-

mental (or computed) ones. Such a comparison requires a shift

in origin, because the standard origin of P63mc does not

correspond to the centre of the C60 onion, which is at the
1
3 ;

2
3 ; 0 position, corresponding to ½100001� (see Table 10).

Conversely, as one can see from Fig. 8, in the graphite-like

interpretation of C60 positions, the origin [000] of P63mc has to

be chosen at ½100001�. Let us consider C60 positions which

correspond with the graphite-like positions ½0 0 1
2� and ½0 1 1

2�,

respectively, and the indices of the graphite-like position at
1
3 ;

2
3 ; 0:

0 0 1
2 ¼ 100001þ 1

2 220002 ¼ 210000

0 1 1
2 ¼ 100001þ 210001þ 1

2 220002 ¼ 020001

100001 ¼
2

31=2
; 0;�

�2

31=2

� �
þ

1

31=2
;�1;

�2

31=2

� �
¼ ð31=2;�1; 0Þ

1
3

2
3 0

� �
¼ �

1

31=2
;�1; 0

� �
þ

4

31=2
; 0; 0

� �
¼ ð31=2;�1; 0Þ: ð29Þ

So far for the C60. Looking now at the graphite-like positions

in the various shells of the C60 onion (and thus at the full series
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Figure 7
Set of faces of the C60 onion viewed along the threefold [1,1,0,0,0,1]
(z axis) and perpendicular to this direction (y axis) in the upper and lower
parts, respectively. The black circles indicate positions belonging to the
orbits involved. The distance between the sheets is h0 ¼ 31=2�2a0=2. That
between positions in the plane (sides of the honeycomb hexagons) is 2a0,
which corresponds to the shortest C—C distance. The red lines indicate
the icosahedral triangular faces delimiting the hexagonal ones of the
fullerenes.

Table 10
Structural parameters of the graphite model, with hexagonal lattice and
Wyckoff positions 2a; 2b of the space group P63mc expressed in indices of
the Zmodule �ico and components x; y; z in the orthonormal basis e0 with
e03 along the hexagonal axis (in the icosahedral threefold direction).

Graphite model Parameters P63mc
Z module
�ico ðx; y; zÞe0

Hexagonal lattice a [100] ½120001� �31=2;�3; 0

b [010] ½210001� 2ð3Þ1=2; 0; 0

c [001] [220002] 0; 0; 2ð3Þ1=2�2

Occupied positions 2a [000] [000000] 0, 0, 0

½00 1
2� [110001] 0; 0; ð3Þ1=2�2

2b ½13
2
3 0� ½100001� 31=2;�1; 0

½23
1
3

1
2� [100002] 0;�2; ð3Þ1=2�2



of ideal fullerenes C60, C240, C540, C960, . . .), one finds that all

positions belonging to a parallel set of hexagonal faces of the

odd shells (C60, C540 etc.) are at odd sheets ðAÞ of the graphite

model, whereas only half of the positions in the even shells

(C240, C960 etc.) are at graphite-like positions of the even sheets

ðBÞ.

This property means that the C60 onion adopts the maximal

possible graphite-like positions compatible with the orienta-

tion of the various shells imposed by the icosahedral symmetry

Ih of the whole ideal molecule. Moreover, the number of these

positions increases with the increases in the shell number n.

A set of corresponding positions is given in Table 11, to be

compared with the results of Table 1 of Dunlap and Zope and

Tables 4 and 6 of this paper. All the examples given, and

possible additional ones, can be computed in a similar way as

indicated in equation (29).

11. Conclusion

As shown in this paper (and in a number of previous ones),

molecular crystallography (which allows alternative approa-

ches like affine extensions and rational scalings) reveals non-

trivial structural relations hidden in the Euclidean description

of the crystallographic structure.

Normally, the determination of these additional relations is

based on a model structure derived from diffraction experi-

ments. In the present case, the icosahedral fullerene models

are obtained from a density-functional computation by

Dunlap & Zope (2006) and the relations are derived here from

crystallographic scalings applied to the fullerene

structures, or alternatively by Wardman (2012) from a

selection of point arrays constructed from affine

extension of the icosahedral group Ih.

As already mentioned in x5, Wardman’s main

result is that her procedure simultaneously models

different shells of a carbon onion (see her PhD thesis,

p. 144).

In the alternative approach presented here, a

similar result is represented by the single-parameter

(a0) dependency shown to occur in each fullerene of

the C60 series, in the infinitely large multishell mole-

cular C60 onion and the ideal graphite model. This

implies in the three cases that all the atomic positions

are mutually correlated, i.e. that these structures are

strongly correlated. The correlation is also formulated

in terms of an algorithm based on the construction

devised by Caspar–Klug for the classification of

icosahedral viruses (Caspar & Klug, 1962). This

allows us to consider the C60 onion as such, quite

independently from how the defining algorithm is

derived, and so also the model of the one-parameter

ideal graphite.

It should be clear that the realm of fullerenes (and

of icosahedral fullerenes, in particular) is much richer

than discussed in this paper. For example, there is a

different C240 fullerene, also based on C60, where all

carbon positions belong to orbits of order 60 and are,

therefore, situated on the hexagonal edges (Cárdenas et al.,

2012).
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Table 11
Positions occurring in both the icosahedral model of the C60 onion and in the one-
parameter hexagonal model of graphite.

Parallel hexagonal faces of the onion shells are in one-to-one correspondence with
graphite sheets. Two positions of C240 are indicated in brackets because they do not fit
with the space-group symmetry of graphite. See Fig. 8 for the first onion shell, the C60

fullerene.

C60 onion One-parameter graphite

Fullerene
Ih

orbit Order Indices P63mc
Wyckoff
position Coordinates

C60 A1 60 210000 00 1
2 2a 0; 0; ð3Þ1=2�2

020001 01 1
2 2a 2ð3Þ1=2; 0; ð3Þ1=2�2

100002 11 1
2 2a ð3Þ1=2;�3; ð3Þ1=2�2

C240 A2 120 320001 001 2a 0; 0; 2ð3Þ1=2�2

130002 011 2a 2ð3Þ1=2; 0; 2ð3Þ1=2�2

(310002) (2
3

1
3 1)

A3 60 400002 101 2a �ð3Þ1=2;�3; 2ð3Þ1=2�2

A4 60 (500001) ð23
1
3 1Þ

C540 A5 60 720000 1
3

5
3

3
2 2b �3ð3Þ1=2; 1; 3ð3Þ1=2�2

A6 60 540000 11 3
2 2a �ð3Þ1=2; 3; 3ð3Þ1=2�2

A7 60 800001 2
3

5
3

3
2 2b �4ð3Þ1=2;�2; 3ð3Þ1=2�2

A8 120 620001 01 3
2 2a �2ð3Þ1=2; 0; 3ð3Þ1=2�2

A9 120 510003 10 3
2 2a �ð3Þ1=2;�3; 3ð3Þ1=2�2

A10 120 430002 00 3
2 2a 0; 0; 3ð3Þ1=2�2

. . . . . . . . . . . . . . . . . . . . .

Figure 8
Comparison between the C60 fullerene and a model of the graphite
structure. The positions of the fullerene which belong to a parallel pair of
hexagonal faces are at positions of the space group P63mc of the graphite.
This allows one to identify the icosahedral indexed carbon positions with
their Wyckoff positions in the space group, implying a c=a ¼ �2 ’ 2:618
relation deviating by about 4% from the value observed in graphite
(6.708/2.456 = 2.731). The centre of the C60 is at 1

3 ;
2
3 ; 0 of P63mc.



More has to be investigated further: in other fullerene series

[already considered by Wardman (2012)], in icosahedral

viruses (Keef et al., 2013) and in complex intermetallics, as

discussed by researchers of the Laboratory of Crystallography,

ETH Zürich (Dshemuchadse et al., 2013).

APPENDIX A
Linear scaling transformations indicated in equation (5),

expressed in the icosahedral basis a of equation (4), with

k ¼ n=m a fractional number:

XkðaÞ ¼
1

2

kþ 1 0 0 �kþ 1 0 0

0 kþ 1 0 0 0 k� 1

0 0 2 0 0 0

�kþ 1 0 0 kþ 1 0 0

0 0 0 0 2 0

0 k� 1 0 0 0 kþ 1

0
BBBBBBBB@

1
CCCCCCCCA
;

YkðaÞ ¼
1

2

2 0 0 0 0 0

0 kþ 1 0 0 0 �kþ 1

0 0 kþ 1 0 �kþ 1 0

0 0 0 2 0 0

0 0 �kþ 1 0 kþ 1 0

0 �kþ 1 0 0 0 kþ 1

0
BBBBBBBB@

1
CCCCCCCCA
;

ZkðaÞ ¼
1

2

kþ 1 0 0 k� 1 0 0

0 2 0 0 0 0

0 0 kþ 1 0 k� 1 0

k� 1 0 0 kþ 1 0 0

0 0 k� 1 0 kþ 1 0

0 0 0 0 0 2

0
BBBBBBBB@

1
CCCCCCCCA
: ð30Þ

The stimulating comments of Professor Annalisa Fasolino,

who also indicated publications on fullerene onions relevant

for the present work, and the valuable improvements
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Bühl, M. & Hirsch, A. (2001). Chem. Rev. 101, 1153–1183.
Calaminici, P., Carmona-Espindola, J., Geudtner, G. & Köster, A. M.

(2012). Int. J. Quantum Chem. 112, 3252–3255.
Cárdenas, C., Munoz, F., Munoz, M., Bernardin, A. & Fuentealba, P.

(2012). Phys. Chem. Chem. Phys. 14, 14810–14814.
Caspar, D. L. D. & Klug, A. (1962). Cold Spring Harb. Symp. Quant.

Biol. 27, 1–24.
Chung, F. & Sternberg, Sh. (1993). Am. Scientist, 81, 56–71.
Dshemuchadse, J., Bigler, S., Simonov, A., Weber, T. & Steurer, W.

(2013). Acta Cryst. B69, 238–248.
Dunlap, B. I. & Zope, R. R. (2006). Chem. Phys. Lett. 422, 451–454.
Fleming, R. M., Hessen, B., Siegriest, T., Kortan, A. R., Marsh, P.,

Tycko, R., Dabbagh, G. & Haddon, R. C. (1992). Fullerenes:
Synthesis, Properties and Chemistry of Large Carbon Clusters, ACS
Symposium Series 481, edited by G. S. Hammond & V. J. Kuck, ch.
2, pp. 25–39. Washington DC: American Chemical Society.

Hadfield, A. T., Lee, W., Zhao, R., Oliveira, M. A., Minor, I.,
Rueckert, R. R. & Rossmann, M. G. (1997). Structure, 5, 427–441.

Janner, A. (2005). Acta Cryst. D61, 269–277.
Janner, A. (2006). Acta Cryst. A62, 319–330.
Janner, A. (2013). Acta Cryst. A69, 151–163.
Katsnelson, M. I. (2012). Graphene. Carbon in Two Dimensions.

Cambridge University Press.
Keef, T. & Twarock, R. (2009). J. Math. Biol. 59, 287–313.
Keef, T., Wardman, J. P., Ranson, N. A., Stockley, P. G. & Twarock, R.

(2013). Acta Cryst. A69, 140–150.
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E.

(1985). Nature (London), 318, 162–163.
Kroto, H. W. & McKay, K. (1988). Nature (London), 331, 328–331.
Maiti, A., Brabec, C. J. & Bernholc, J. (1993). Phys. Rev. Lett. 70,

3023–3026.
Terrones, M., Terrones, G. & Terrones, H. (2002). Struct. Chem. 13,

373–384.
Wardman, J. P. (2012). PhD thesis, University of York, England.

research papers

180 A. Janner � Alternative approaches to onion-like icosahedral fullerenes Acta Cryst. (2014). A70, 168–180

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5028&bbid=BB19

